208 research outputs found

    Shell game optimization:A novel game-based algorithm

    Get PDF

    Further properties on the core partial order and other matrix partial orders

    Get PDF
    This paper carries further the study of core partial order initiated by Baksalary and Trenkler [Core inverse of matrices, Linear Multilinear Algebra. 2010;58:681-697]. We have extensively studied the core partial order, and some new characterizations are obtained in this paper. In addition, simple expressions for the already known characterizations of the minus, the star (and one-sided star), the sharp (and one-sided sharp) and the diamond partial orders are also obtained by using a Hartwig-Spindelbck decomposition.This author was partially supported by Ministry of Education of Spain [grant number DGI MTM2010-18228] and by Universidad Nacional de La Pampa, Argentina, Facultad de Ingenieria [grant number Resol. No 049/11].Malik, SB.; Rueda, LC.; Thome, N. (2014). Further properties on the core partial order and other matrix partial orders. Linear and Multilinear Algebra. 62(12):1629-1648. https://doi.org/10.1080/03081087.2013.839676S162916486212Mitra, S. K., & Bhimasankaram, P. (2010). MATRIX PARTIAL ORDERS, SHORTED OPERATORS AND APPLICATIONS. SERIES IN ALGEBRA. doi:10.1142/9789812838452Baksalary, J. K., & Hauke, J. (1990). A further algebraic version of Cochran’s theorem and matrix partial orderings. Linear Algebra and its Applications, 127, 157-169. doi:10.1016/0024-3795(90)90341-9Baksalary, O. M., & Trenkler, G. (2010). Core inverse of matrices. Linear and Multilinear Algebra, 58(6), 681-697. doi:10.1080/03081080902778222Baksalary, J. K., Baksalary, O. M., & Liu, X. (2003). Further properties of the star, left-star, right-star, and minus partial orderings. Linear Algebra and its Applications, 375, 83-94. doi:10.1016/s0024-3795(03)00609-8Groβ, J., Hauke, J., & Markiewicz, A. (1999). Partial orderings, preorderings, and the polar decomposition of matrices. Linear Algebra and its Applications, 289(1-3), 161-168. doi:10.1016/s0024-3795(98)10108-8Mosić, D., & Djordjević, D. S. (2012). Reverse order law for the group inverse in rings. Applied Mathematics and Computation, 219(5), 2526-2534. doi:10.1016/j.amc.2012.08.088Patrício, P., & Costa, A. (2009). On the Drazin index of regular elements. Open Mathematics, 7(2). doi:10.2478/s11533-009-0015-6Rakić, D. S., & Djordjević, D. S. (2012). Space pre-order and minus partial order for operators on Banach spaces. Aequationes mathematicae, 85(3), 429-448. doi:10.1007/s00010-012-0133-2Tošić, M., & Cvetković-Ilić, D. S. (2012). Invertibility of a linear combination of two matrices and partial orderings. Applied Mathematics and Computation, 218(9), 4651-4657. doi:10.1016/j.amc.2011.10.052Hartwig, R. E., & Spindelböck, K. (1983). Matrices for whichA∗andA†commute. Linear and Multilinear Algebra, 14(3), 241-256. doi:10.1080/03081088308817561Baksalary, O. M., Styan, G. P. H., & Trenkler, G. (2009). On a matrix decomposition of Hartwig and Spindelböck. Linear Algebra and its Applications, 430(10), 2798-2812. doi:10.1016/j.laa.2009.01.015Mielniczuk, J. (2011). Note on the core matrix partial ordering. Discussiones Mathematicae Probability and Statistics, 31(1-2), 71. doi:10.7151/dmps.1134Meyer, C. (2000). Matrix Analysis and Applied Linear Algebra. doi:10.1137/1.978089871951

    Energy Commitment for a Power System Supplied by Multiple Energy Carriers System using Following Optimization Algorithm

    Get PDF
    In today’s world, the development and continuation of life require energy. Supplying this energy demand requires careful and scientific planning of the energy provided by a variety of products, such as oil, gas, coal, electricity, etc. A new study on the operation of energy carriers called Energy Commitment (EC) is proposed. The purpose of the EC is to set a pattern for the use of energy carriers to supply energy demand, considering technical and economic constraints. EC is a constrained optimization problem that can be solved by using optimization methods. This study suggests the Following Optimization Algorithm (FOA) to solve the EC problem to achieve technical and economic benefits. Minimizing energy supply costs for the total study period is considered as an objective function. The FOA simulates social relationships among the community members who try to improve their community by following each other. Simulation is carried out on a 10-unit energy system supplied by various types of energy carriers that includes transportation, agriculture, industrial, residential, commercial, and public sectors. The results show that the optimal energy supply for a grid with 0.15447 Millions of Barrels of Oil Equivalent (MBOE) of energy demand costs 9.0922 millions dollar for a 24-h study period. However, if the energy supply is not optimal, the costs of operating energy carriers will increase and move away from the optimal economic situation. The economic distribution of electrical demand between 10 power plants and the amount of production units per hour of the study period is determined. The EC outputs are presented, which include an appropriate pattern of energy carrier utilization, energy demand supply costs, appropriate combination of units, and power plant production. The behavior and process of achieving the answer in the convergence curve for the implementation of FOA on EC indicates the exploration and exploitation capacity of FOA. Based on the simulated results, EC provides more information than Unit Commitment (UC) and analyzes the network more efficiently and deeply.Peer ReviewedPostprint (published version

    Intelligent computing in electrical utility industry 4.0 : concept, key technologies, applications and future directions

    Get PDF
    Industry 4.0 (I-4.0) is referred to as ‘fourth industrial revolution’ towards incorporation of artificial intelligence and digitalization of industrial systems. It is meticulously associated with the development and advancement of evolving technologies such as: Internet of Things, Cyber-Physical System, Information and Communications Technology, Enterprise Architecture, and Enterprise Integration. Power systems of today face several challenges that need to be addressed and application of these technologies can make the modern power systems become more effective, reliable, secure, and cost-effective. Therefore, a widespread analysis of I- 4.0 is performed in this paper and a summary of the outcomes, future scope, and real-world application of I- 4.0 on the electrical utility industry (EUI) is reported by reviewing the existing literature. This report will be helpful to the investigators interested in the area of I- 4.0 and for application in EUI.Analytical Center for Government of the Russian Federation.https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639Electrical, Electronic and Computer Engineerin

    A weak group inverse for rectangular matrices

    Full text link
    [EN] In this paper, we extend the notion of weak group inverse to rectangular matrices (called WweightedWGinverse) by using the weighted core EP inverse recently investigated. This new generalized inverse also generalizes the well-known weighted group inverse given by Cline and Greville. In addition, we give several representations of the W-weighted WG inverse, and derive some characterizations and properties.First author was partially supported by UNRC (Grant PPI 18/C472) and CONICET (Grant PIP 112-201501-00433CO). Third author was partially supported by Ministerio de Economia, Industria y Competitividad of Spain (Grants DGI MTM2013-43678-P and Red de Excelencia MTM2017-90682-REDT).Ferreyra, DE.; Orquera, V.; Thome, N. (2019). A weak group inverse for rectangular matrices. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 113(4):3727-3740. https://doi.org/10.1007/s13398-019-00674-9S372737401134Ben-Israel, A., Greville, T.N.E.: Generalized Inverses: Theory and Applications, 2nd edn. Springer, New York (2003)Baksalary, O.M., Trenkler, G.: Core inverse of matrices. Linear Multilinear Algebra 58, 681–697 (2010)Baksalary, O.M., Trenkler, G.: On a generalized core inverse. Appl. Math. Comput. 236, 450–457 (2014)Bajodah, A.H.: Servo-constraint generalized inverse dynamics for robot manipulator control design. Int. J. Robot. Autom. 25, (2010). https://doi.org/10.2316/Journal.206.2016.1.206-3291Campbell, S.L., Meyer Jr., C.D.: Generalized Inverses of Linear transformations. SIAM, Philadelphia (2009)Cline, R.E., Greville, T.N.E.: A Drazin inverse for rectangular matrices. Linear Algebra Appl. 29, 53–62 (1980)Dajić, A., Koliha, J.J.: The weighted g-Drazin inverse for operators. J. Aust. Math. Soc. 2, 163–181 (2007)Doty, K.L., Melchiorri, C., Bonivento, C.: A theory of generalized inverses applied to robotics. Int. J. Rob. Res. 12, 1–19 (1993)Drazin, M.P.: Pseudo-inverses in associate rings and semirings. Am. Math. Mon. 65, 506–514 (1958)Ferreyra, D.E., Levis, F.E., Thome, N.: Revisiting of the core EP inverse and its extension to rectangular matrices. Quaest. Math. 41, 265–281 (2018)Ferreyra, D.E., Levis, F.E., Thome, N.: Maximal classes of matrices determining generalized inverses. Appl. Math. Comput. 333, 42–52 (2018)Gigola, S., Lebtahi, L., Thome, N.: The inverse eigenvalue problem for a Hermitian reflexive matrix and the optimization problem. J. Comput. Appl. Math. 291, 449–457 (2016)Hartwig, R.E.: The weighted ∗* ∗ -core-nilpotent decomposition. Linear Algebra Appl. 211, 101–111 (1994)Kirkland, S.J., Neumann, M.: Group inverses of M-matrices and their applications. Chapman and Hall/CRC, London (2013)Malik, S., Thome, N.: On a new generalized inverse for matrices of an arbitrary index. Appl. Math. Comput. 226, 575–580 (2014)Male sˇ{{\check{\rm s}}} s ˇ ević, B., Obradović, R., Banjac, B., Jovović, I., Makragić, M.: Application of polynomial texture mapping in process of digitalization of cultural heritage. arXiv:1312.6935 (2013). Accessed 14 June 2018Manjunatha Prasad, K., Mohana, K.S.: Core EP inverse. Linear Multilinear Algebra 62, 792–802 (2014)Mehdipour, M., Salemi, A.: On a new generalized inverse of matrices. Linear Multilinear Algebra 66, 1046–1053 (2018)Meng, L.S.: The DMP inverse for rectangular matrices. Filomat 31, 6015–6019 (2017)Mosić, D.: The CMP inverse for rectangular matrices. Aequaetiones Math. 92, 649–659 (2018)Penrose, R.: A generalized inverse for matrices. Proc. Cambrid. Philos. Soc. 51, 406–413 (1955)Soleimani, F., Stanimirović, P.S., Soleymani, F.: Some matrix iterations for computing generalized inverses and balancing chemical equations. Algorithms 8, 982–998 (2015)Xiao, G.Z., Shen, B.Z., Wu, C.K., Wong, C.S.: Some spectral techniques in coding theory. Discrete Math. 87, 181–186 (1991)Wang, H.: Core-EP decomposition and its applications. Linear Algebra Appl. 508, 289–300 (2016)Wang, H., Chen, J.: Weak group inverse. Open Math. 16, 1218–1232 (2018)Wei, Y.: A characterization for the WW W -weighted Drazin inverse and a Crammer rule for the WW W -weighted Drazin inverse solution. Appl. Math. Comput. 125, 303–310 (2002
    • …
    corecore